Bin Fang 1,2,4,*†Zhizhang Wang 2†Yantao Li 1Jitao Ji 2[ ... ]Tao Li 2,5,*
Author Affiliations
Abstract
1 College of Optical and Electronic Technology, Centre for THz Research, China Jiliang University, Hangzhou 310018, China
2 National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
3 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
4 e-mail: binfang@cjlu.edu.cn
5 e-mail: taoli@nju.edu.cn
Employing couplers to convert guided waves into free-space modes and flexibly control their wavefront is one of the key technologies in chip-integrated displays and communications. Traditional couplers are mainly composed of gratings, which have limitations in footprint, bandwidth, as well as controllability. Though the resonant/geometric metasurface newly emerges as a promising interface for bridging guided waves with free-space ones, it either relies on complex optimizations of multiple parameters, or is subject to the locked phase response of opposite spins, both of which hinder the functional diversity and practical multiplexing capability. Here, we propose and experimentally demonstrate an alternative with a spin-decoupled meta-coupler, simultaneously integrating triple functions of guided wave radiation, polarization demultiplexing, and dual-channel wavefront manipulation into a single device. By endowing polarization-dependent functionalities into a pure geometric metasurface, the out-coupled left-handed and right-handed circular polarization guided waves intelligently identify the predesigned phase modulation and reconstruct desired wavefronts, like bifocal focusing and holography multiplexing, with a polarization extinction ratio over 13.4 dB in experiments. We envision that the robust, broadband, and multifunctional meta-coupler could pave a way for the development of versatile multiplexed waveguide-based devices.
Photonics Research
2023, 11(12): 2194
Author Affiliations
Abstract
Centre for THz Research, China Jiliang University, Hangzhou 310018, China
We propose and experimentally demonstrate a high quality (Q)-factor all-silicon bound state in the continuum (BIC) metasurface with an imperforated air-hole array. The metasurface supports two polarization-insensitive BICs originated from guided mode resonances (GMRs) in the frequency range of 0.4 to 0.6 THz, and the measured Q-factors of the two GMRs are as high as 334 and 152, respectively. In addition, the influence of the thickness of the silicon substrate on the two resonances is analyzed in detail. The proposed all-silicon THz metasurface has great potential in the design and application of high-Q metasurfaces.
bound state in the continuum all-silicon metasurface high-quality factor terahertz 
Chinese Optics Letters
2023, 21(11): 113601
Author Affiliations
Abstract
1 College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
2 Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
3 Centre of Translational Atomaterials (CTAM), Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
4 School of Science, RMIT University, Melbourne, VIC 3000, Australia
5 The Australian Research Council (ARC) Industrial Transformation Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, VIC 3122, Australia
Light beams carrying orbital angular momentum (OAM) have inspired various advanced applications, and such abundant practical applications in turn demand complex generation and manipulation of optical vortices. Here, we propose a multifocal graphene vortex generator, which can produce broadband angular momentum cascade containing continuous integer non-diffracting vortex modes. Our device naturally embodies a continuous spiral slit vortex generator and a zone plate, which enables the generation of high-quality continuous vortex modes with deep depths of foci. Meanwhile, the generated vortex modes can be simultaneously tuned through incident wavelength and position of the focal plane. The elegant structure of the device largely improves the design efficiency and can be fabricated by laser nanofabrication in a single step. Moreover, the outstanding property of graphene may enable new possibilities in enormous practical applications, even in some harsh environments, such as aerospace.
optical vortex multifocus broadband wavelength tunability graphene 
Chinese Optics Letters
2022, 20(10): 103602
Author Affiliations
Abstract
School of Control Science and Engineering, Shandong University, Jinan, 250061, China
An acoustic emission (AE) linear location system was proposed, which employed fiber Bragg gratings (FBGs) as AE sensors. It was demonstrated that the FBG wavelength could be modulated as the static case when the grating length was much shorter than the AE wavelength. In addition, an improved AE location method based on the Gabor wavelet transform (WT) and threshold analysis was represented. The method was testified through AE linear location experiments based on a tunable narrow-band laser interrogation system using ultra-short FBG sensors as AE sensors. Results of the experiments showed that 86% of the linear location errors were less than 10 mm.
Acoustic emission (AE) linear location fiber Bragg gratings (FBGs) Gabor wavelet transform (WT) threshold analysis 
Photonic Sensors
2014, 4(2): 152

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!